Stat 534: formulae referenced in lecture, week 10: Hierarchical modeling

Example: Grizzly bear counts in Yellowstone Park

- Looks approx. linear on log scale after 1980
 - Exponential growth
 - Want to estimate population per capita growth rate
- Two ways to do this
 - Ignore random variation, initially
 - Model 1:

$$N_t = r^t N_0$$

$$\log N_t = t \, \log r + \log N_0$$

- Model 2:

$$N_t = r N_{t-1}$$
$$\log r = \log N_t - \log N_{t-1}$$

- Mathematically identical
- Now add random variation $\Rightarrow 2$ estimators
- Model 1:
 - Linear regression

 $\log N_t = \log r t + \log N_0 + \varepsilon_t$

- $-\widehat{\log r} = \text{regression slope}$
- Model 2:
 - average change

$$\log r_t = \log N_t - \log N_{t-1} + \tau_t$$

$$-\widehat{\log r} = \overline{\log r_t}$$

- Applied to grizzly bear data
 - $\begin{array}{cccc} \text{Model} & \widehat{\log r} & \text{se} \\ 1 & 0.054 & 0.006 \\ 2 & 0.061 & 0.034 \end{array}$
 - 1

- Why?
 - $-\varepsilon_t$ and τ_t not the same "sort" of variability
 - Biologically and statistically different
 - $-\varepsilon_t$: independent, log N_t independent
 - * Each ε_t acts only on one $\log N_t$
 - $-\tau_t$: independent, log N_t correlated!
 - * τ_t accumulate
 - * $N_2 = \log r_t + \log N_1 + \tau_2$ = $2 \log r_t + \log N_0 + \tau_1 + \tau_2$
- Observation error (model 1)
 - population grows at r each year
 - errors are deviations from E $\log N_t$
- Process error (model 2)
 - population growth is random,
 - different r_t each year
 - $-\tau_t$ is variability of growth rate

Estimating $\log r$ when both types of error

- Need to combine the process (model 2) and observation (model 1)
- Introduce an unmeasured "latent" variable, ν_t
- Process model:

$$\log \nu_t = \log r + \log \nu_{t-1} + \tau_t$$

• Observation model:

$$\log N_t = \log \nu_t + \varepsilon_t$$

- This is a hierarchical model
- Results for Yellowstone grizzlies

Parameter	estimate	se
r	0.060	0.025
σ_{ϵ}^2	0.083	
$\sigma_{ au}^2$	0.090	

- Process error and observation error approximately the same
- Could write the model without ν_t
 - Esp. when rv's have normal distributions
 - Latent variable simplifies writing the model
- Characteristics of hierarchical model
 - Multiple "levels" of variability
 - Almost always include a latent variable

Other examples of hierarchical models

- density dependent population growth
 - latent variable: # individuals that "drive" the density dependence
- classifying fish eggs
 - latent variable: species identity
- animal movement:
 - latent variable: "state", resting, searching, traveling